Friday, March 25, 2016

Event Recap: Dr. Sarah Rhodes, Health Science Policy Analyst

by Chris Yarosh

PSPG tries to hold as many events as limited time and funding permit, but we cannot bring in enough speakers to cover the range of science policy careers out there. Luckily, other groups at Penn hold fantastic events, too, and this week’s Biomedical Postdoc Program Career Workshop was no exception. While all of the speakers provided great insights into their fields, this recap focuses on Dr. Sarah Rhodes, a Health Science Policy Analyst in the Office of Science Policy (OSP) at the National Institutes of Health (NIH).

First, some background: Sarah earned her Ph.D. in Neuroscience from Cardiff University in the U.K., and served as a postdoc there before moving across the pond and joining a lab at the NIH. To test the policy waters, Sarah took advantage of NIH’s intramural detail program, which allows scientists to do temporary stints in administrative offices. For her detail, Sarah worked as a Policy Analyst in the Office of Autism Research Coordination (OARC) at the National Institute of Mental Health (NIMH). That experience convinced her to pursue policy full time. Following some immigration-related delays, Sarah joined OARC as a contractor and later became a permanent NIH employee.

After outlining her career path, Sarah provided an overview of how science policy works in the U.S. federal government, breaking the field broadly into three categories: policy for science, science for policy, and science diplomacy. According to Sarah (and as originally promulgated by Dr. Diane Hannemann, another one of this event’s panelists), the focus of different agencies roughly breaks down as follows:


This makes a lot of sense. Funding agencies like NIH and NSF are mostly concerned with how science is done, Congress is concerned with general policymaking, and the regulatory agencies both conduct research and regulate activities under their purview. Even so, Sarah did note that all these agencies do a bit of each type of policy (e.g. science diplomacy at NIH Fogarty International Center). In addition, different components of each agency have different roles. For example, individual Institutes focus more on analyzing policy for their core mission (aging at NIA, cancer at NCI, etc.), while the OSP makes policies that influence all corners of the NIH.

Sarah then described her personal duties at OSP’s Office of Scientific Management and Reporting (OSMR):
  • Coordinating NIH’s response to a directive from the President’s Office of Science and Technology Policy related to scientific collections (think preserved specimens and the like)
  • Managing the placement of AAAS S&T Fellows at NIH
  • Supporting the Scientific Management Review Board, which advises the NIH Director
  • Preparing for NIH’s appropriations hearings and responding to Congressional follow-ups
  • “Whatever fires needs to be put out”
If this sounds like the kind of job for you, Sarah recommends building a professional network and developing your communication skills ASAP (perhaps by blogging!?). This sentiment was shared by all of the panelists, and it echoes advice from our previous speakers. Sarah also strongly recommends volunteering for university or professional society committees. These bodies work as deliberative teams and are therefore good preparation for the style of government work.

For more information, check out the OSP’s website and blog. If you’re interested in any of the other speakers from this panel, I refer you to the Biomedical Postdoc Program.

Wednesday, February 17, 2016

Event Recap: Dr. Sarah Martin, ASBMB Science Policy Fellow

by Ian McLaughlin

On February 11th, Dr. Sarah Martin, a Science Policy Fellow at the American Society for Biochemistry and Molecular Biology (ASBMB), visited Penn to chat about her experience working in science policy. As it turns out, her story is perhaps more circuitous than one might expect.

An avid equestrian, Sarah earned a bachelor’s degree in animal sciences and a master’s degree in animal nutrition at the University of Kentucky before embarking on a Ph.D. in Molecular and Cellular Biochemistry at UK’s College of Medicine. While pursuing her degrees, Sarah realized that the tenure track was not for her, and she began exploring career options using the Individual Development Plan (IDP) provided by AAAS Careers. At the top of the list: science policy.

With an exciting career option in mind, Sarah sought ways to build “translatable skills” during her Ph.D. to help her move toward science policy. She served as treasurer, and later Vice President, of UK’s Graduate Student Congress and developed her communication skills by starting her own blog and participating in ThreeMinute Thesis.  Sarah stressed the importance of communicating with non-scientists, and she highlighted how her practice paid off during Kentucky’s first-ever State Capitol Hill Day, an event that showcases Kentucky-focused scientific research to that state’s legislators.

Sarah also shared  how she got up to speed on science policy issues, becoming a “student of policy” by voraciously reading The Hill, RollCall, Politico, ScienceInsider, and ASBMB’s own PolicyBlotter. Additionally, she started to engage with peers, non-scientists, and legislators on Twitter, noting how it’s a useful tool to sample common opinions on issues related to science.  Finally, she reached out to former ASBMB fellows for advice on how to pursue a career in science policy – and they were happy to help.

Sarah then described the typical responsibilities of an ASBMB fellow, breaking them down into four categories:
  1. Research- tracking new legislation, and a daily diet of articles regarding new developments in science and policy
  2. Meetings- with legislators on Capitol Hill, staff at the NIH, partner organizations such as the Federation of American Societies for Experimental Biology (FASEB), and others
  3. Writing- white papers, position statements, and blog posts on everything from ASBMB’s position on gene editing to the NIH Strategic Plan for FY 2016-2020
  4. Administration- organizing and preparing for meetings, composing executive summaries, and helping to plan and organize ASBMB’s Hill Day.

Sarah also talked about her own independent project at ASBMB, a core component of each Fellowship experience. Sarah aims to update ASBMB’s Advocacy Toolkit in order to consolidate all of the resources a scientist might need to engage in successful science advocacy.

Comparing the ASBMB fellowship to similar fellowships, she noted as an advantage that there is no specific end to the fellowship, which gives Fellows plenty of time to find permanent positions that match their interests.  Sarah also noted that, compared to graduate students and postdocs, she enjoys an excellent work/life balance.

Ultimately, Sarah made it clear that she loves what she does. She closed by providing the following resources from ASBMB Science Policy Analyst Chris Pickett for anyone interested in applying for the ASBMB fellowship or pursuing a career in science policy:

Monday, December 14, 2015

WHO says bacon causes cancer?

by Neha Pancholi

Note: Here at the PSPG blog, we like to feature writing from anyone in the Penn community interested in the science policy process or science for general interest. This is the 1st in a series of posts from new authors. Interested is writing for the blog? Contact us!

The daily meat consumption in the United States exceeds that of almost every other country1. While the majority of meat consumed in the United States is red meat2, the consumption of certain red meats has decreased over the past few decades due to associated health concerns, such as heart disease and diabetes1,2. In October, the World Health Organization (WHO) highlighted another potential health concern for red meat: cancer.

The announcement concerned both red and processed meat. Red meat is defined as unprocessed muscle meat from mammals, such as beef and pork3. Processed meat– generally red meat –has been altered to improve flavor through processes such as curing or smoking3. Examples of processed meat include bacon and sausage. The WHO confirmed that processed meat causes cancer and that red meat probably causes cancer. Given the prevalence of meat in the American diet, it was not surprising that the announcement dominated headlines and social media. So how exactly did the WHO decide that processed meat causes cancer?

The announcement by the WHO followed a report from the International Agency for Research on Cancer (IARC), which is responsible for identifying and assessing suspected causes of cancer. The IARC evaluates the typical level of exposure to a suspected agent, results from existing studies, and the mechanism by which the agent could cause cancer.

After a review of existing literature, the IARC classifies the strength of scientific evidence linking the suspected cancer-causing agent to cancer. Importantly, the IARC determines only whether there is sufficient evidence that something can cause cancer. The IARC does not evaluate risk, meaning that it does not evaluate how carcinogenic something is. The IARC classifies the suspected carcinogen into one of the following categories4:
  • Group 1 – There is convincing evidence linking the agent to cancer in humans. The agent is deemed carcinogenic.
  • Group 2A – There is sufficient evidence of cancer in animal models, and there is a positive association observed in humans. However, the evidence in humans does not exclude the possibility of bias, chance, or confounding variables. The agent is deemed as a probable carcinogen.
  • Group 2B – There is a positive association in humans, but the possibility of bias, chance, or confounding variables cannot be excluded. There is inadequate evidence in animal models.
  • This category is also used when there is sufficient evidence of cancer in animal models, but there is not an association observed in humans. The agent is a possible carcinogen.
  • Group 3 – There is inadequate evidence in humans and animals. The agent cannot be classified as carcinogenic or not carcinogenic.
  • Group 4 – There is sufficient evidence to conclude that the agent is not carcinogenic in humans or in animals.
The IARC reviewed over 800 studies that examined the correlation between consumption of processed or red meat and cancer occurrence in humans. These types of studies, which examine patterns of disease in different populations, are called epidemiological studies. The studies included observations from all over the world and included diverse ethnicities and diets. The greatest weight was given to studies that followed the same group of people over time and had an appropriate control group. Most of the available data examined the association between meat consumption and colorectal cancer, but some studies also assessed the effect on stomach, pancreatic, and prostate cancer. The majority of studies showed a higher occurrence of colorectal cancer in people whose diets included high consumption of red or processed meat compared to those who have low consumption. By comparing results from several studies, the IARC determined that for every 100 grams of red meat consumed per day, there is a 17% increase in cancer occurrence. For every 50 grams of processed meat eaten per day, there is an 18% increase. The average red meat consumption for those who eat it is 50-100 grams per day.3

The IARC also reviewed studies that examined how meat could cause cancer. They found strong evidence that consumption of red or processed meat leads to the formation of known carcinogens called N-nitroso compounds in the colon. It is also known that cooked meat contains two types of compounds that are known to damage DNA, which can lead to cancer. However, there is not a direct link between eating meat containing these compounds and DNA damage in the body.3

Based on the strong evidence demonstrating a positive association with consumption of processed meat and colorectal cancer, the IARC classified processed meat as a Group 1 agent3. This means that there is sufficient evidence that consumption of processed meat causes cancer.

There was a positive association between consumption of red meat and colorectal cancer in several epidemiological studies. However, the possibility of chance or bias could not be excluded from these studies. Furthermore, the best-designed epidemiological studies did not show any association between red meat consumption and cancer. Despite the limited epidemiological evidence, there was strong mechanistic evidence demonstrating that red meat consumption results in the production of known carcinogens in the colon. Therefore, red meat was classified as a probable carcinogen (Group 2A)3.

It will be interesting to see how the WHO announcement affects red meat consumption in the United States and worldwide. But before swearing off processed and red meat forever, there are a few things to consider.

First, it is important to bear in mind that agents classified within the same group have varying carcinogenic potential. Processed meat was classified as a Group 1 agent, which is the same classification for tobacco smoke. However, estimates by the Global Burden of Disease Project attribute approximately 34,000 cancer deaths per year to consumption of processed meat5. In contrast, one million cancer deaths per year are due to tobacco smoke5. While the evidence linking processed meat to cancer is strong, the risk of cancer due to processed meat consumption appears to be much lower than other known carcinogens. Second, the IARC did not evaluate studies that compared vegetarian or poultry diets to red meat consumption5. Therefore, it is unknown whether vegetarian or poultry diets are associated with fewer cases of cancer. Finally, red meat is high in protein, iron, zinc, and vitamin B123. Thus, while high red meat consumption is associated with some diseases, there are also several health benefits of consuming red meat in moderation. Ultimately, it will be important to balance the risks and benefits of processed and red meat consumption.


1http://www.npr.org/sections/thesalt/2012/06/27/155527365/visualizing-a-nation-of-meat-eaters
2http://www.usda.gov/factbook/chapter2.pdf
3Bouvard et al. Carcinogenicity of consumption of red and processed meat. The Lancet Oncology, 2015. 16(16): 1599-1600.
4http://www.iarc.fr/en/media-centre/iarcnews/pdf/Monographs-Q&A.pdf
5http://www.who.int/features/qa/cancer-red-meat/en/

Thursday, December 3, 2015

Ready to Adapt: Experts Discuss Philadelphia Epidemic Preparedness

by Jamie DeNizio and Hannah Shoenhard


In early November, public health experts from a variety of organizations gathered on Penn’s campus to discuss Philadelphia’s communication strategies and preparation efforts in the event of an epidemic outbreak. In light of recent crises, such as H1N1 and Ebola in the US, AAAS Emerging Leaders in Science and Society (ELISS) fellows and the Penn Science Policy Group (PSPG) hosted local experts at both a public panel discussion and a focus group meeting to understand the systems currently in place and develop ideas about what more can be done.
Are we prepared?: Communication with the public
Dr. Max King, moderator of the public forum, set the tone for both events with a Benjamin Franklin quote: “By failing to prepare, you are preparing to fail.” Measures taken before a crisis begins can make or break the success of a public health response. In particular, in the age of the sensationalized, 24-hour news cycle, the only way for public health professionals to get the correct message to the public is to establish themselves as trustworthy sources of information in the community ahead of time.
For reaching the general population, the advent of social media has been game-changing. As an example, James Garrow, Director of Digital Public Health for the Philadelphia Department of Public Health, described Philadelphia’s use of its Facebook page to rapidly disseminate information during the H1N1 flu outbreak. The city was able to provide detailed information while interacting with and answering questions directly from members of the public in real time, a considerable advantage over traditional TV or print news.

However, Garrow was quick to note that “mass media still draws a ton of eyeballs,” and that any public health outreach program would be remiss to neglect traditional media such as TV, radio, and newspapers. At this point, social media is a complement to, but not a replacement for, other forms of media engagement.
Furthermore, those typically at greater risk during an epidemic are often unable to interact with social media channels due to economic disadvantage, age, or a language barrier. In Philadelphia, 21.5% of the population speaks a language other than English at home. Meanwhile, 12.5% of the population is over the age of 65 (U.S. Census Bureau). The focus group meeting specifically discussed how to reach these underserved groups. Some suggestions included having “block captains” or registries. “Block captains” would be Philadelphia citizens from a particular block or neighborhood that would be responsible for communicating important information to residents in their designated section. In addition to these methods of monitoring individuals, there was general agreement that there is a need for translation-friendly, culturally-relevant public health messages.

For example, during the open forum, Giang T. Nguyen, leader of the Penn Asian Health Initiative and Senior Fellow of the Penn Center for Public Health Initiatives, emphasized the importance of building ties with “ethnic media”: small publications or radio channels that primarily cater to immigrant communities in their own languages. He noted that, in the past, lack of direct contact between government public health organizations and non-English-speaking communities has led to the spread of misinformation in these communities.

On the other hand, Philadelphia has also successfully engaged immigrant communities in the recent past. For example, Garrow pointed to Philadelphia’s outreach in the Liberian immigrant community during the Ebola outbreak as a success story. When the outbreak began, the health department had already built strong ties with the Liberian community, to the point where the community actively asked the health department to hold a town hall meeting, rather than the reverse. This anecdote demonstrates the importance of establishing trust and building ties before a crisis emerges.
With regards to both general and community-targeted communication, the experts agreed that lack of funding is a major barrier to solving current problems. At the expert meeting, it was suggested that communication-specific grants, rather than larger grants with a certain percentage allotted for communication, might be one way of ameliorating this problem.
Are we prepared?: Communication between health organizations

The need for established communications networks extends beyond those for communicating directly with individuals. It is crucial for the local health department and healthcare system to have a strong relationship. Here in Philadelphia, the health department has a longstanding relationship with Penn Medicine, as well as other universities and major employers. In case of an emergency, these institutions are prepared to distribute vaccines or other medicines. Furthermore, mechanisms for distribution of vaccines already in place are “road-tested” every year during flu season. As an example, Penn vaccinated 2,500 students and faculty for the flu in eight hours during a recent vaccination drive, allowing personnel to sharpen their skills and identify any areas that need improvement.

In addition to the strong connections between major Philadelphia institutions, there is also a need for smaller health centers and community centers to be kept in the loop. These small providers serve as trusted intermediaries between large public health organizations and the public. According to the experts, these relationships are already in place. For example, during the recent Ebola crisis, the CDC set up a hotline for practitioners to call if one of their patients returned from an Ebola-stricken country with worrying symptoms. “You can’t expect everyone in the entire health system to know all they need to know [about treating a potential Ebola case],” said Nguyen, “but you can at least ensure that every practice manager and medical director knows the phone number to call.”

Can we adapt?
Ultimately, no crisis situation is fully predictable. Therefore, what matters most for responders is not merely having the proper protocols, resources, and avenues of communication in place, but also the ability to adjust their reaction to a crisis situation as it evolves. As Penn behavioral economics and health policy expert Mitesh Patel pointed out at the end of the open forum, “It’s not are we ready?, it’s are we ready to adapt?
The topic of adaptability was also heavily discussed at the focus group meeting. A lack of a central communication source was identified as a potential barrier to adaptability. So was a slow response from agencies further up the chain of command, such as the CDC. However, experts also disagreed about the precise degree of control the CDC should have at a local level. For example, representatives from local government agencies, which are more directly accountable to the CDC, expressed a desire for the CDC to proactively implement strategies, instead of attempting to direct the local response once it has already begun. Many physicians and hospital representatives, on the other hand, were of the opinion that plans formulated by the people closest to the crisis may be superior due to their situational specificity and lack of red tape. Despite this point of contention, experts agreed that there is a need for some consensus and coordination between hospitals in a particular region on how to respond to a large-scale health event.

One gap in Philadelphia’s preparedness identified by the experts in the focus group is its ability to case manage novel diseases—a challenge, since often the transmission route of novel diseases is not known. Some experts in the meeting also expressed doubt that Philadelphia is prepared for a direct biological attack. However, numerous epidemic-response frameworks already in place could potentially be repurposed for novel or deliberately-spread pathogens. In these cases, even more so than in “typical” epidemic situations, the experts identified adaptability as a key factor for success.

At the end of the open forum, the panelists affirmed the belief that Philadelphia is as prepared as it can be for an infectious disease crisis.  Furthermore, it seemed they had also moved the opinions of the event’s attendees: before the forum, attendees rated Philadelphia’s readiness at an average of 3.1 on a 6-point scale (with 0 being “not at all ready” and 6 being “completely ready”), while afterwards, the same attendees rated Philadelphia’s readiness at an average of 3.9 on the same scale (p=0.07, paired t-test).

Sunday, November 22, 2015

Reminder: Science does not happen in a vacuum

by Chris Yarosh

It is very easy to become wrapped up in day-to-day scientific life. There is always another experiment to do, or a paper to read, or a grant to submit. This result leads to that hypothesis, and that hypothesis needs to be tested, revised, re-tested, etc. Scientists literally study the inner workings of life, matter and the universe itself, yet science often seems set apart from other worldly concerns.

But it’s not.

The terrorist attacks in Paris and Beirut and the ongoing Syrian refugee crisis have drawn the world’s attention, and rightfully so. These are genuine catastrophes, and it is difficult to imagine the suffering of those who must face the aftermath of these bouts of shocking violence.

At the same time, 80 world leaders are preparing to gather in freshly scarred Paris for another round of global climate talks. In a perfect world, these talks would focus only on the sound science and overwhelming consensus supporting action on climate change, and they would lead to an agreement that sets us on a path toward healing our shared home.

But this is not a perfect world.

In addition to the ongoing political struggle and general inertia surrounding climate change, we now must throw the fallout from the Paris attacks into the mix. Because of this, the event schedule will be limited to core discussions, which will deprive some people of their chance to demonstrate and make their voices heard on a large stage. This is a shame, but at least the meeting will go on. If the situation is as dire as many scientists and policy experts say it is, this meeting may be our last chance to align the world’s priorities and roll back the damage being caused to our planet. It was never going to be easy, and the fearful specter of terrorism—and the attention and resources devoted to the fight against it— does nothing to improve the situation.

This is a direct example of world events driving science and science policy, but possible indirect effects abound as well. It is not outside the realm of possibility that political disagreement over refugee relocation may lead to budget fights or government shutdown, both of which could seriously derail research in the U.S. With Election 2016 rapidly approaching, it is also possible that events abroad can drive voter preferences at home, with unforeseen impacts on how research is funded, conducted, and disseminated.

What does this mean for science and science policy?

For one, events like this remind us once again that scientists must stay informed and be ready to adapt as sentiments and attention shift in real time. Climate change and terrorism may not have seemed linked until now (though there is good reason to think that this connection runs deep), but the dramatic juxtaposition of both in Paris changes that. Scientists can offer our voices to the discussion, but it is vital that we keep abreast of the shifting political landscapes that influence the conduct and application of science. Keeping this birds-eye view is critical, because while these terrorist attacks certainly demand attention and action, they do nothing to change the urgent need for action on the climate, on health, and on a whole host of issues that require scientific expertise.

While staying current and engaging in policymaking is always a good thing for science (feel free to contact your representatives at any time), situations like the Syrian refugee crisis offer a more unique chance to lend a hand. Science is one of humanity’s greatest shared endeavors, an approach to understanding the world that capitalizes on the innate curiosity that all people share. This shared interest has always extended to displaced peoples, with the resulting collaborations providing a silver lining to the negative events that precipitated their migrations. Where feasible, it would be wise for universities across the globe to welcome Syrians with scientific backgrounds; doing so would provide continuity and support for the displaced while preventing a loss of human capital. Efforts to this effect are currently underway in Europe, though it is unclear how long these programs can survive the tension surrounding that continent.

For good and ill, world events have always shaped science. The tragedies in France, Syria, and elsewhere have incurred great human costs, and they will serve as a test of our shared humanity. As practitioners of one of our great shared enterprises, scientists have a uniquely privileged place in society, and we should use our station to help people everywhere in any way possible.

Wednesday, November 4, 2015

Communicating about an Epidemic in the Digital Age - Live Stream of Forum


To watch this event in real time, please follow this link (from 530 - 7pm, 11/4)


How prepared are Philadelphia’s institutions to communicate with the public in the event of a future epidemic? What specific challenges were successfully or unsuccessfully addressed during the Ebola crisis that could provide learning points going forward? Are there successful models or case studies for handling communication during epidemics that are worth emulating?

These questions will be up for debate on Wednesday at the University of Pennsylvania in a forum open to the public. The event will be held in the Penn bookstore (3601 Walnut St.) upstairs meeting room from 5:30 to 7 p.m. on Wednesday, November 4.

To learn more about this event, please read our preview article.

Tuesday, November 3, 2015

New funding mechanism aims to bring balance to the biomedical research (work)force

by Chris Yarosh

This past March, the National Cancer Institute (NCI) announced a new funding mechanism designed to stabilize the biomedical research enterprise by creating new career paths for PhD-level scientists. That mechanism, called the NCI Research Specialist Award (R50), is now live. Applications (of which there will likely be many) for the R50 will be accepted beginning in January, with the first crop of directly-funded Research Specialists starting in October 2016. More details about the grant can be found in the newly released FOA.

Why is this a big deal? In recent years, there have been increased calls for reform of the biomedical enterprise. More people than ever hold PhDs, and professor positions (the traditional career goal of doctorate holders) are scarce. This leaves many young researchers trapped somewhere in the middle in postdoctoral positions, something we've talked about  before on this blog. These positions are still considered to be training positions, and without professor openings (or funding for independent labs), these scientists often seek industry positions or leave the bench altogether in lieu of finding academic employment.

On the flip side, modern academic labs are highly dependent on a constant stream of graduate students and postdocs to do the lion’s share of the research funded by principal investigator-level grants (R01s). This creates a situation where entire labs can turn over in relatively short periods of time, possibly diminishing the impact of crucial research programs.

But what if there was another way? That, in a nutshell, is the aim of the R50. By funding the salaries (but not the research costs) of PhD-level researchers, the R50 seeks to create opportunities for scientists to join established research programs or core facilities without having to obtain larger grants or academic appointments. This attempts to kill two birds with one stone: more jobs for PhDs, less turnover in labs already funded by other NCI grants.

This approach is not all roses, however. For one, this doesn’t change the fact that research funding has been flat or worse in recent years. Even with more stable staffing, the amount of research being completed will continue to atrophy. Moreover, the money for future R50s will need to come from somewhere, and it is possible that this will put additional strain on the NCI’s budget if overall R&D spending is not increased soon. Lastly, there are some concerns about how the R50 will work in practice. For example, Research Specialists will be able to move to other labs with NCI approval, but how will this actually play out? Will R50s really be pegged to their recipients, or will there be an implicit understanding that they are tied to the supporting labs/institutions?

It should be noted that this is only a trial period, and that full evaluation of the program will not be possible until awards are actually made. Still, this seems like a positive response to the forces currently influencing the biomedical research enterprise, and it will be interesting to see if and when the other NIH institutes give something like this a shot.