Sunday, November 22, 2015

Reminder: Science does not happen in a vacuum

by Chris Yarosh

It is very easy to become wrapped up in day-to-day scientific life. There is always another experiment to do, or a paper to read, or a grant to submit. This result leads to that hypothesis, and that hypothesis needs to be tested, revised, re-tested, etc. Scientists literally study the inner workings of life, matter and the universe itself, yet science often seems set apart from other worldly concerns.

But it’s not.

The terrorist attacks in Paris and Beirut and the ongoing Syrian refugee crisis have drawn the world’s attention, and rightfully so. These are genuine catastrophes, and it is difficult to imagine the suffering of those who must face the aftermath of these bouts of shocking violence.

At the same time, 80 world leaders are preparing to gather in freshly scarred Paris for another round of global climate talks. In a perfect world, these talks would focus only on the sound science and overwhelming consensus supporting action on climate change, and they would lead to an agreement that sets us on a path toward healing our shared home.

But this is not a perfect world.

In addition to the ongoing political struggle and general inertia surrounding climate change, we now must throw the fallout from the Paris attacks into the mix. Because of this, the event schedule will be limited to core discussions, which will deprive some people of their chance to demonstrate and make their voices heard on a large stage. This is a shame, but at least the meeting will go on. If the situation is as dire as many scientists and policy experts say it is, this meeting may be our last chance to align the world’s priorities and roll back the damage being caused to our planet. It was never going to be easy, and the fearful specter of terrorism—and the attention and resources devoted to the fight against it— does nothing to improve the situation.

This is a direct example of world events driving science and science policy, but possible indirect effects abound as well. It is not outside the realm of possibility that political disagreement over refugee relocation may lead to budget fights or government shutdown, both of which could seriously derail research in the U.S. With Election 2016 rapidly approaching, it is also possible that events abroad can drive voter preferences at home, with unforeseen impacts on how research is funded, conducted, and disseminated.

What does this mean for science and science policy?

For one, events like this remind us once again that scientists must stay informed and be ready to adapt as sentiments and attention shift in real time. Climate change and terrorism may not have seemed linked until now (though there is good reason to think that this connection runs deep), but the dramatic juxtaposition of both in Paris changes that. Scientists can offer our voices to the discussion, but it is vital that we keep abreast of the shifting political landscapes that influence the conduct and application of science. Keeping this birds-eye view is critical, because while these terrorist attacks certainly demand attention and action, they do nothing to change the urgent need for action on the climate, on health, and on a whole host of issues that require scientific expertise.

While staying current and engaging in policymaking is always a good thing for science (feel free to contact your representatives at any time), situations like the Syrian refugee crisis offer a more unique chance to lend a hand. Science is one of humanity’s greatest shared endeavors, an approach to understanding the world that capitalizes on the innate curiosity that all people share. This shared interest has always extended to displaced peoples, with the resulting collaborations providing a silver lining to the negative events that precipitated their migrations. Where feasible, it would be wise for universities across the globe to welcome Syrians with scientific backgrounds; doing so would provide continuity and support for the displaced while preventing a loss of human capital. Efforts to this effect are currently underway in Europe, though it is unclear how long these programs can survive the tension surrounding that continent.

For good and ill, world events have always shaped science. The tragedies in France, Syria, and elsewhere have incurred great human costs, and they will serve as a test of our shared humanity. As practitioners of one of our great shared enterprises, scientists have a uniquely privileged place in society, and we should use our station to help people everywhere in any way possible.

Wednesday, November 4, 2015

Communicating about an Epidemic in the Digital Age - Live Stream of Forum


To watch this event in real time, please follow this link (from 530 - 7pm, 11/4)


How prepared are Philadelphia’s institutions to communicate with the public in the event of a future epidemic? What specific challenges were successfully or unsuccessfully addressed during the Ebola crisis that could provide learning points going forward? Are there successful models or case studies for handling communication during epidemics that are worth emulating?

These questions will be up for debate on Wednesday at the University of Pennsylvania in a forum open to the public. The event will be held in the Penn bookstore (3601 Walnut St.) upstairs meeting room from 5:30 to 7 p.m. on Wednesday, November 4.

To learn more about this event, please read our preview article.

Tuesday, November 3, 2015

New funding mechanism aims to bring balance to the biomedical research (work)force

by Chris Yarosh

This past March, the National Cancer Institute (NCI) announced a new funding mechanism designed to stabilize the biomedical research enterprise by creating new career paths for PhD-level scientists. That mechanism, called the NCI Research Specialist Award (R50), is now live. Applications (of which there will likely be many) for the R50 will be accepted beginning in January, with the first crop of directly-funded Research Specialists starting in October 2016. More details about the grant can be found in the newly released FOA.

Why is this a big deal? In recent years, there have been increased calls for reform of the biomedical enterprise. More people than ever hold PhDs, and professor positions (the traditional career goal of doctorate holders) are scarce. This leaves many young researchers trapped somewhere in the middle in postdoctoral positions, something we've talked about  before on this blog. These positions are still considered to be training positions, and without professor openings (or funding for independent labs), these scientists often seek industry positions or leave the bench altogether in lieu of finding academic employment.

On the flip side, modern academic labs are highly dependent on a constant stream of graduate students and postdocs to do the lion’s share of the research funded by principal investigator-level grants (R01s). This creates a situation where entire labs can turn over in relatively short periods of time, possibly diminishing the impact of crucial research programs.

But what if there was another way? That, in a nutshell, is the aim of the R50. By funding the salaries (but not the research costs) of PhD-level researchers, the R50 seeks to create opportunities for scientists to join established research programs or core facilities without having to obtain larger grants or academic appointments. This attempts to kill two birds with one stone: more jobs for PhDs, less turnover in labs already funded by other NCI grants.

This approach is not all roses, however. For one, this doesn’t change the fact that research funding has been flat or worse in recent years. Even with more stable staffing, the amount of research being completed will continue to atrophy. Moreover, the money for future R50s will need to come from somewhere, and it is possible that this will put additional strain on the NCI’s budget if overall R&D spending is not increased soon. Lastly, there are some concerns about how the R50 will work in practice. For example, Research Specialists will be able to move to other labs with NCI approval, but how will this actually play out? Will R50s really be pegged to their recipients, or will there be an implicit understanding that they are tied to the supporting labs/institutions?

It should be noted that this is only a trial period, and that full evaluation of the program will not be possible until awards are actually made. Still, this seems like a positive response to the forces currently influencing the biomedical research enterprise, and it will be interesting to see if and when the other NIH institutes give something like this a shot.

Monday, November 2, 2015

Communicating about an Epidemic in the Digital Age

**Link for live streaming of this event can be found here**

by Hannah Shoenhard, Jamie DeNizio, and Michael Allegrezza

Craig Spencer, a New York City doctor, tested positive for Ebola on October 23. The story broke online the same day, and by the next morning, tabloids were plastered with images of masked and gowned health workers with headlines such as Bungle Fever and Ebola! Late-night comedy, Twitter, local news: the story was inescapable, the hysteria palpable. All in all, only eleven Ebola patients were treated on U.S. soil. But the media’s reaction affected the lives of anyone who watched television or had an internet connection.

The Ebola epidemic in Africa has died down. Liberia is Ebola-free, while Sierra Leone and Guinea continue to report cases in the low single digits per week. Most promisingly, a new vaccine has been shown to be highly effective in a clinical trial. Given the vaccine, it seems that the likelihood of future epidemics on the scale of the one in 2014 is low. But especially during the early days of the epidemic, miscommunication and mistrust of international public health workers slowed the medical response and exacerbated the epidemic. And, as the reaction to the New York City case shows us, this problem is not unique to West African countries.

Even if the threat from Ebola in particular is under control, infectious disease is endemic to civilization. Knowing that new epidemic threats can emerge at any time, important questions need to be considered. 

How prepared are Philadelphia’s institutions to communicate with the public in the event of a future epidemic? What specific challenges were successfully or unsuccessfully addressed during the Ebola crisis that could provide learning points going forward? Are there successful models or case studies for handling communication during epidemics that are worth emulating?

These questions will be up for debate on Wednesday at the University of Pennsylvania in a forum open to the public. The event will be held in the Penn bookstore (3601 Walnut St.) upstairs meeting room from 5:30 to 7 p.m. on Wednesday, November 4.

The event is hosted by two graduate student groups at Penn, the Emerging Leaders in Science and Society (ELISS) Fellows and the Penn Science Policy Group with the goal of fostering collaborative ideas to develop effective channels to manage trust, fear, and accurate communication during potential future epidemics.

On the panel for the forum will be three innovators in communicating public health issues, Dr. Mitesh Patel, MD, MBA, MS, James Garrow, MPH, and Dr. Giang T. Nguyen, MD, MPH, MSCE. Moderating the discussion will be Dr. Max King, Ph.D., Associate Vice Provost for Health and Academic Services at Penn.

Community members are encouraged to attend the forum with questions and comments. People can also watch a live stream of the event (check our twitter page for the link) and submit questions via twitter with #EpidemicPhilly.


Biographies of the panelists and moderator


Mitesh Patel
 
Mitesh S. Patel, MD, MBA, MS is a board-certified general internist, physician scientist, and entrepreneur. He is an Assistant Professor of Medicine and Health Care Management at the Perelman School of Medicine and The Wharton School at the University of Pennsylvania. His work focuses on leveraging behavioral economics, connected health approaches and data science to improve population health and increase value within the health care delivery system. 

As a physician-scientist, Mitesh studies how we can utilize innovative technology and connected health approaches to passively monitor activity and how we can use health incentives to motivate behavior change. His prior work has been published in NEJM, JAMA, the Annals of Internal Medicine and featured in the New York Times, NPR, and CNN. Mitesh also co-founded, Docphin, a startup that strives to improve the application of evidence-based medicine into clinical practice.

Mitesh holds undergraduate degrees in Economics and Biochemistry as well as a Medical Doctorate from the University of Michigan. He obtained an MBA in Health Care Management from The Wharton School and an MS in Health Policy Research from the Perelman School of Medicine at the University of Pennsylvania. Mitesh completed his internal medicine residency training and the Robert Wood Johnson Clinical Scholars Program at the University of Pennsylvania.

James Garrow

James Garrow, MPH is a nationally recognized proponent and advocate for the use of social media and digital tools in the execution of public health activities. His role as the Director of Digital Public Health in Philadelphia is among the first in the country charged with using new digital tools and techniques like social media, crowdsourcing, and big data utilization. He also provides media relations support for the Philadelphia Department of Public Health.

An accomplished public speaker and noted thought leader, Jim has been invited to and spoken at conferences across the US on social media use in public health and emergency response. He is an active social media user, maintaining two regularly scheduled Twitterchats and a blog on crisis and emergency risk communications.

Jim obtained a B.S. in Applied Sociology from Drexel in 2001 and a Master’s of Public Health from Temple in 2011. 


Giang T. Nguyen

Dr. Nguyen, MD, MPH, MSCE, is an Assistant Professor in the School of Medicine, Department of Family Medicine and Community Health at Penn.  He is also Chair of the MD-MPH Advisory Committee and a member of the MPH Program Curriculum Committee.

Dr. Nguyen leads the Penn Asian Health Initiatives. His research focus is in Asian immigrant health with concentrations in cancer control, disease prevention, and community-based participatory research. His community engagement work has included outreach to Vietnamese and other Southeast Asian refugees, health fairs and immunization clinics, cancer education workshops, advocacy, HIV/AIDS, and LGBT issues. He serves on boards and advisory committees for several Asian serving organizations, including the Asian and Pacific Islander National Cancer Survivors Network.

Dr. Nguyen is also the Medical Director of Penn Family Care, the clinical practice of the University of Pennsylvania's Department of Family Medicine and Community Health. He provides direct care to adult and pediatric patients in the primary care setting and teaches medical students and family medicine residents. He also is a Senior Fellow of the Penn Center for Public Health Initiatives, where he is a core faculty member for the Penn MPH program.
Max King
Previously the coordinator of Penn State's University Scholars Program, Max King, Ph.D., MS, is now Associate Vice Provost for Health and Academic Services at The University of Pennsylvania.
Dr. King holds three degrees from Penn State: a B.S. in Biological Health, M.S. in Health Education, and Ph.D. from the Interdisciplinary Program in Educational Theory and Policy. His research focus is the multidimensional Methodology of Q-Analysis, or Polyhedral Dynamics, a higher-level structural analysis approach derived from algebraic topology.

Dr. King also held an appointment as an Affiliate Assistant Professor and a member of the graduate faculty in the Department of Administration, Policy, Foundations, and Comparative/International Education at Penn State. He taught educational foundations, comparative education, British education, research methods, and international education. He also has extensive experience in computer systems, developing mainframe and microcomputer research and thesis applications.