Tuesday, October 11, 2016

Event Recap: The Importance of Science-Informed Policy & Law Making

by Ian McLaughlin          

Last week, we held a panel discussion focused on the importance of science-informed policy & law making.  The panel included Dr. Michael Mann, a climatologist and geophysicist at Pennsylvania State University who recently wrote The Madhouse Effect: How Climate Change Denial is Threatening Our Planet, Destroying Our Politics, and Driving Us Crazy.   Dr. Andrew Zwicker, a member of the New Jersey General Assembly and a physicist who heads the Science Education Department of the Princeton Plasma Physics Laboratory, joined him.  Finally, Shaughnessy Naughton, a chemist and entrepreneur who ran for congressional office in Pennsylvania and founded the 314 PAC, which promotes the election of candidates with backgrounds in STEM fields to public office, joined the panel as well.

The event began with personal introductions, with each member characterizing their unique perspectives and personal histories.  Shaughnessy Naughton highlighted the scarcity of legislators with backgrounds in math and science as a primary motivator for encouraging people with science backgrounds to get involved beyond just advocacy. 

Dr. Andrew Zwicker, having previously run for office in the US House of Representatives, ultimately was successful in his run for the state assembly in an extremely tight race, winning by just 78 votes, or 0.2456%  – a level of precision that he’s been told would only be spoken by a scientist, as most would simplify the value to a quarter of a percent.  He credited two primary features of his campaign as contributing to his success.  First, on a practical level, he utilized a more sophisticated voter model.  As the first Democrat ever elected to his district in its 42 years[1], it was critical to optimally allocate resources to effectively communicate his message.  Second, he identified his background in science as a strength.  When campaigning, he made it clear that he’d ensure facts would guide his decisions – and his constituents found that pragmatism appealing.

Next, Dr. Michael Mann summarized his pathway to prominence in the climate change debate by recounting the political fallout that occurred following the publication of his now famous “hockey-stick graph”[2].  In short, the graph depicts that average global temperatures had been fairly stable until 1900 (forming the shaft of the hockey stick), at which point a sharp rise in temperature begins (forming the blade).  In articulating why exactly this publication made such a splash, he highlighted the simplicity of the graph. It summarizes what is otherwise fairly esoteric data in a way that’s accessible to non-scientists.  “You don’t have to understand the complex physics to understand what the graph was saying: there’s something unprecedented taking place today, and, by implication, probably has something to do with what we’re doing.”  After its publication, he was in for a whirlwind.  The graph became iconic in the climate change debate, provoking the ire of special interests who then pursued a strategy to personally discredit Mann.

Naughton initiated the conversation by asking Zwicker if his background in science has influenced what he’s been able to accomplish in his past 9 months of public office.  While at times it has given him credibility and garnered trust among his peers and constituents, the nature of science is often incongruous with politics: rather than relying solely on facts, politics requires emotional and personal appeals to get things done.  A specific example: the fear of jobs being lost due to legislation, particularly reforms focused on energy and climate change, oftentimes obscures what would otherwise be a less volatile debate.

Naughton then asked Mann to describe his experience with Ken Cuccinelli, the former Attorney General (AG) of Virginia under former governor Bob McDonnell.  One of the former AG’s priorities was to target the Environmental Protection Agency’s ability to regulate greenhouse gas emissions, as well as demand the University of Virginia – the institution where Dr. Mann had been an assistant professor from 1999 to 2005 – to provide a sweeping compilation of documents associated with Dr. Mann.  Cuccinelli was relying upon the 2002 Virginia Fraud Against Taxpayers Act, devised to enable the AG to ferret out state waste and fraud, to serve the civil investigative demand.  Ultimately, Cuccinelli’s case was rejected, and has since been considered a major victory to the integrity of academic research and scientists’ privacy.

The panel then invited questions from attendees, which ranged from technical inquiries of how climate estimates were made for the Hockey Stick Curve to perspectives on policy & science communication. 

One question focused on the public’s ability to digest and think critically about scientific knowledge – highlighting that organizations and institutions like AAAS and the NSF regularly require funded investigators to spend time communicating their research to a broader audience.  However, the relationship between the public and science remains tenuous.  Zwicker responded by identifying a critical difference in efficacy between the beautiful images and data from NASA or press releases and the personal experiences of people outside of science.  Special interest groups can disseminate opinions and perspectives that don’t comport with the scientific consensus, and without truly effective science communication, the public simply can’t know whom to trust.  He argued that scientists do remain a broadly trusted group, but without competent efforts to communicate the best science, it remains a major challenge.  Ultimately, the solution involves a focus on early education and teaching critical thinking skills.

Moreover, Mann commented on a problematic fallacy that arises from a misunderstanding of how science works: “there’s a fallacy that because we don’t know something, we know nothing.  And that’s obviously incorrect.” There are many issues at the forefront of science that remain to be understood, but that forefront exists because of relevant established knowledge.  “We know greenhouse gasses warm the planet, and it’ll warm more if we continue burning carbon.  There’s still uncertainty with gravity.  We haven’t reconciled quantum mechanics with general relativity.  Just because we haven’t reconciled all of the forces, and there’s still something to be learned about gravity at certain scales – we still understand that if we jump out the window, we’ll plummet to our deaths.”

Naughton suggested that much of this disconnect between scientific knowledge and public sentiment comes down to communication.  “For many scientists, it’s very difficult to communicate very complex processes and theories in a language that people can understand.  As scientists, you want to be truthful and honest.  You don’t learn everything about quantum mechanics in your first year of physics; by not explaining everything, that doesn’t mean you’re being dishonest.” 

Zwicker highlighted that there aren’t many prominent science communicators, asking the audience to name as many as they could.  Then, he asked if we could name prominent female science communicators, which proved more difficult for the audience.  There isn’t necessarily a simple solution to this obvious problem, given the influence of special interests and concerns of profitability.

An audience member then asked whether the panelists considered nuclear energy a viable alternative – and, in particular “warehouse-ready nuclear”, which describes small modular reactors that operate on a much smaller scale than the massive reactors to which we’ve become accustomed.  Zwicker, as a physicist, expressed skepticism: “You’ll notice there are no small reactors anywhere in the world.  By the time you build a reactor and get through the regulation – and we’re talking 10-30 years to be completed – we’re still far away from them being economically viable.”  He also noted that he’s encountered the argument that investment allocation matters to the success of a given technology, and that investment in one sustainable energy platform may delay progress in others.  The audience then asked about the panel’s perspectives on natural gas, which is characterized by some as a bridge fuel to a lower carbon-emitting future energy source.  Summarizing his perspective on natural gas, Mann argued “a fossil fuel ultimately can’t be the solution to a problem caused by fossil fuels.”

Jamie DeNizio, a member of PSPG, asked if the panel thought coalitions between state and local governments could be an effective strategy to get around current barriers at the national level.  Naughton noted that this is ultimately the goal behind the federal Clean Power Plan, with goals tailored to specific states for cutting carbon output.  Mann, highlighting the prevalent lack of acceptance of climate change at the federal level, suggested that the examples of state consortia that currently exist – like The Regional Greenhouse Gas Initiative (RGGI) in New England, or the Pacific Coast Collaborative (PCC) on the West Coast – are causes for optimism, indicating that progress can be made despite gridlock at the federal level.  Zwicker noted that New Jersey’s participation in trading carbon credits had resulted in substantial revenue, as New Jersey was able to bring in funds to build a new hospital.  He suggested that Governor Chris Christie’s decision to withdraw from RGGI was imprudent, and the New York Times noted that, in 2011, New Jersey had received over $100 million in revenue from RGGI[3].

Another issue that was brought up by the panel was how counterproductive infighting among environmentalists and climate change activists can be to the overall effort.  In particular, this splintering enables critics to portray climate change as broadly incoherent, rendering the data and proposals less convincing to skeptics of anthropogenic climate change.

Adrian Rivera, also a PSPG member, asked the panel to comment on whether they felt social media is an effective strategy to communicate science to the general public.  Mann stated that scientist that do not engage on social media are not being as effective as they can be, mostly because there is a growing subset of the population that derives information via social media platforms. In contrast, Zwicker highlighted the lack of depth on social media, and that some issues simply require more in-depth discussion than social media tends to accommodate. Importantly, Zwicker emphasized the importance and value of face-to-face communication. Naughton then brought this point to a specific example of poor science communication translating into tangible problems.  “It’s not all about policy or NIH/NSF funding.  It’s about making sure evolution is being taught in public schools.”  She noted the experience of a botany professor in Susquehanna, PA, who was holding an info-session on biology for high-school teachers. One of the attending high-school teachers told him that he was brave for teaching evolution in school, which Naughton identified as an example of ineffective science communication.

Finally, an environmental activist in the audience noted that a major problem he’d observed in his own approach to advocacy was that he was often speaking through feelings of anger rather than positive terms.  Mann thoroughly agreed, and noted that “there’s a danger when we approach from doom and gloom.  This takes us to the wrong place; it becomes an excuse for inaction, and it actually has been co-opted by the forces of denial.  It is important to communicate that there is urgency in confronting this problem [climate change] – but that we can do it, and have a more prosperous planet for our children and grandchildren.  It’s critical to communicate that.  If you don’t provide a path forward, you’re leading people in the wrong direction.”

The event was co-hosted by 314 Action, a non-profit affiliated with 314 PAC with the goal of strengthening communication among the STEM community, the public, and elected officials.


References:

1. Qian, K. (2015, November 11). Zwicker elected as first Democrat in NJ 16th district. Retrieved October 6, 2016, from http://dailyprincetonian.com/news/2015/11/zwicker-elected-as-first-democrat-in-nj-16th-district/

2. Mann, Michael E.; Bradley, Raymond S.; Hughes, Malcolm K. (1999), "Northern hemisphere temperatures during the past millennium: Inferences, uncertainties, and limitations" (PDF), Geophysical Research Letters, 26 (6): 759–762, Bibcode:1999GeoRL..26..759M, doi:10.1029/1999GL900070

3. Navarro, M. (2011, May 26). Christie Pulls New Jersey From 10-State Climate Initiative. Retrieved October 6, 2016, from http://www.nytimes.com/2011/05/27/nyregion/christie-pulls-nj-from-greenhouse-gas-coalition.html?_r=1&ref=nyregion

Monday, October 3, 2016

New Research shows how to make Human Stem Cell Lines divide equally

by Amaris Castanon
For the first time, scientists have generated haploid embryonic stem (ES) cell lines in humans, as published in Nature. This could lead to novel cell therapies for genetic diseases – even color blindness (Benvenisty et al., 2016)
The study was performed by scientists from the Hebrew University of Jerusalem(Israel) in collaboration with Columbia University Medical Center (CUMC) and the New York Stem Cell Foundation (NYSCF).
The newly derived pluripotent, human ES cell lines demonstrated their ability to ‘self-renew’ while maintaining a normal haploid karyotype (i.e. without chromosomal breakdown after each generation) (Benvenisty et al., 2016).
While gamete manipulation in other mammalian species has yielded several ES cell lines (Yang, H. et al., Leeb, M. & Wutz, A.), this is the first study to report human cells capable of cell division with merely one copy of the parent’s cell genome (Benvenisty et al., 2016).
The genetic match between the stem cells and the egg donor may prove advantageous for cell-based therapies of genetic diseases such as diabetes, Tay-Sachs disease and even color blindness (Elling et al., 2011).
Mammalian cells are considered diploid due to the fact that two sets of chromosomes are inherited: 23 from the father and 23 from the mother (a total of 46) (Wutz, 2014; Yang H. et al., 2013). Haploid cells contain a single set of 23 chromosomes and arise only as post-meiotic germ cells (egg and sperm) to ensure the right number of chromosomes end up in the zygote (embryo) (Li et al., 2014; Elling et al., 2011).
Other studies performed in an effort to generate ES cells from human egg cells reported generating solely diploid (46 chromosome) human stem cells, which is a problem (Leeb, M. et al., 2012; Takahashi, S. et al., 2014). This study, however, reported inducing cell division in unfertilized human egg cells (Benvenisty et al., 2016).
The DNA was labeled with a florescent dye prior to isolating the haploid stem cells and scattering (the haploid cells or the cells) among the larger pool of diploid cells. The DNA staining demonstrated that the haploid cells retained their single set of chromosomes, while differentiating to other cell types including nerve, heart, and pancreatic cells demonstrates their ability to give rise to cells of different lineage (pluripotency) (Benvenisty et al., 2016).
Indeed, the newly derived haploid ES cells demonstrated pluripotent stem cell characteristics, such as self-renewal capacity and a pluripotency-specific molecular signature (Benvenisty et al., 2016).
In addition, the group of researchers successfully demonstrated usage of their newly derived human ES cells as a platform for loss-of-function genetic screening. Therefore, elucidating the genetic screening potential of targeting only one of the two copies of a gene.
These findings may facilitate genetic analysis in the future by allowing an ease of gene editing in cancer research and regenerative medicine.
This is a significant finding in haploid cells, due to the fact that detecting the biological effects of a single-copy mutation in a diploid cell is difficult. The second copy does not contain the mutation and therefore serves as a ‘backup’ set of genes, making it a challenge for precise detection.
The newly derived haploid ES cells will provide researchers with a valuable tool for improving our understanding of human development and genetic diseases.
This study has provided scientists with a new type of human stem cell that will play an important role in human functional genomics and regenerative medicine.
References:
Derivation and differentiation of haploid human embryonic stem cells. Sagi I, Chia G, Golan-Lev T, Peretz M, Weissbein U, Sui L, Sauer MV, Yanuka O, Egli D, Benvenisty N. Nature. 2016 Apr 7;532(7597):107-11.

Elling, U. et al. Forward and reverse genetics through derivation of haploid mouse embryonic stem cells. Cell Stem Cell 9, 563–574 (2011).

Leeb, M. et al. Germline potential of parthenogenetic haploid mouse embryonic stem cells. Development 139, 3301–3305 (2012)

Leeb, M. & Wutz, A. Derivation of haploid embryonic stem cells from mouse embryos.Nature 479, 131–134 (2011)

Li, W. et al. Genetic modification and screening in rat using haploid embryonic stem cells. Cell Stem Cell 14, 404–414 (2014).

Takahashi, S. et al. Induction of the G2/M transition stabilizes haploid embryonic stem cells. Development 141, 3842–3847 (2014)

Wutz, A. Haploid mouse embryonic stem cells: rapid genetic screening and germline transmission. Annu. Rev. Cell Dev. Biol. 30, 705–722 (2014).

Yang, H. et al. Generation of genetically modified mice by oocyte injection of androgenetic haploid embryonic stem cells. Cell 149, 605–617 (2012)